
On algorithms to find p-ordering ?

Aditya Gulati, Sayak Chakrabarti, and Rajat Mittal

IIT Kanpur
{aditg, sayak, rmittal}@iitk.ac.in

Abstract. The concept of p-ordering for a prime p was introduced by
Manjul Bhargava (in his PhD thesis) to develop a generalized factorial
function over an arbitrary subset of integers. This notion of p-ordering
provides a representation of polynomials modulo prime powers, and has
been used to prove properties of roots sets modulo prime powers. We
focus on the complexity of finding a p-ordering given a prime p, an ex-
ponent k and a subset of integers modulo pk.
Our first algorithm gives a p-ordering for a set of size n in time
Õ(nk log p), where set is considered modulo pk. The subsets modulo pk

can be represented concisely using the notion of representative roots
(Panayi, PhD Thesis, 1995; Dwivedi et al., ISSAC, 2019); a natural
question is, can we find a p-ordering more efficiently given this succinct
representation. Our second algorithm achieves precisely that, we give a
p-ordering in time Õ(d2k log p + nk log p + nd), where d is the size of the
succinct representation and n is the required length of the p-ordering.
Another contribution is to compute the structure of roots sets for prime
powers pk, when k is small. The number of root sets have been given
before (Dearden and Metzger, Eur. J. Comb., 1997; Maulick, J. Comb.
Theory, Ser. A, 2001), we explicitly describe all the root sets for k ≤ 4.

Keywords: root-sets · p-ordering · polynomials · prime powers

1 Introduction

Polynomials over finite fields have played a crucial role in computer science
with impact on diverse areas like error correcting codes [8,15,23,24], cryptogra-
phy [11,18,21], computational number theory [1,2] and computer algebra [17,25].
Mathematicians have studied almost all aspects of these polynomials; factoriza-
tion of polynomials, roots of a polynomial and polynomials being irreducible or
not are some of the natural questions in this area. There is lot of structure over
finite field; we can deterministically count roots and find if a polynomials is irre-
ducible in polynomial time [19]. Not just that, we also have efficient randomized
algorithms for the problem of factorizing polynomials over finite fields [3,9].

The situation changes drastically if we look at rings instead of fields. Focusing
our attention on the case of numbers modulo a prime power (ring ZZpk , for a
prime p and a natural number k ≥ 2) instead of numbers modulo a prime (field
? This paper is a contribution to the special issue of CALDAM 2021

2 Aditya Gulati, Sayak Chakrabarti, and Rajat Mittal

Fp), we don’t even have unique factorization and the fact that the number of
roots are bounded by the degree of the polynomial. Still, there has been some
interesting work in last few decades. Maulik [20] showed bound on number of
roots sets, sets which are roots for a polynomial modulo a prime power. There
has been some recent works giving a randomized algorithm for root finding [4]
and a deterministic algorithm for root counting [10,14].

The concept of p-ordering and p-sequences for a prime p, introduced by Bhar-
gava [5], is an important tool in studying the properties of roots sets and poly-
nomials over powers of the prime p [5,7,20]. Bhargava’s main motivation to in-
troduce p-ordering was to generalize the concept of factorials (n! for n ≥ 0 ∈ ZZ)
from the set of integers to any subset of integers. He was able to show that many
number-theoretic properties of this factorial function (like the product of any k
consecutive non-negative integers is divisible by k!) remain preserved even with
the generalized definition for a subset of integers [6].

For polynomials, Bhargava generalized Polya’s theorem, showing that the
GCD of the outputs of a degree k polynomial on a subset S of integers divides
the analogous factorial of k for S. He also gave a characterization of polynomials
which are integer valued on a subset of integers. Both results use a convenient
basis, using p-ordering, for representing polynomials on a subset of integers.

A similar convenient basis can be obtained for subsets of ZZpk . An interesting
problem for polynomials over rings, of the kind ZZpk , is to find the allowed root

sets (Definition 4). Maulik [20] was able to use this representation of polynomials
over ZZpk (from p-ordering) to give asymptotic estimates on the number of root
sets modulo a prime power pk; he also gave a recursive formula for root counting.

Our contributions While a lot of work has been done on studying the properties
of p-orderings [7,16,20], there’s effectively no work on finding the complexity of
the problem: given a subset of numbers modulo a prime power, find a p-ordering.
Our main contribution is to look at the computational complexity of finding p-
ordering in different settings. We also classify and count the root-sets for ZZpk ,
when k ≤ 4, by looking at their symmetric structure.

• p-ordering for a general set: Suppose, we want to find the p-ordering of a set
S ⊆ ZZpk such that |S| = n. A naive approach gives a Õ(n3k log(p)) time
algorithm. We exploit the recursive structure of p-orderings and optimize
the resulting algorithm using data structures. These optimizations allow us
to give an algorithm that works in Õ(nk log(p)) time. The details of the
algorithm, its correctness and time complexity is given in Section 3.

• p-ordering for a subset in representative root representation: A polynomial
of degree d in ZZpk can have exponentially many roots, but they can have
at most d representative roots [4,14,22] giving a succinct representation. In
general, any efficient algorithm for root finding or factorization should out-
put the roots in form of such kind of representative roots (the complete
set of roots could be exponentially large). The natural question is, can we
have an efficient algorithm for finding a p-ordering where the complexity
scales according to the number of representative roots and not the size of

On algorithms to find p-ordering 3

the complete set. We answer this in affirmative, and provide an algorithm
which works in Õ(d2k log p+ nk log p+ nd) time, where d is the number of
representative roots and n is the length of p-ordering. The details of this
algorithm and its analysis are presented in Section 4.

• Roots sets for small powers: A polynomial in ZZpk , even with small degree,
can have exponentially large number of roots. Still, not all subsets of ZZpk

are a root-set for some polynomial. The number of root-sets for the first
few values of k were calculated numerically by Dearden and Metzger [13].
Building on previous work, Maulik [20] produced an upper bound on the
number of root-sets for any p and k. He also gave a recursive formula for
the exact number of root-sets using the symmetries in their structure. We
look at the structure of these root sets and completely classify all possible
root-sets for k ≤ 4 (we describe these in Section 5).

2 Preliminaries

2.1 Notation and time complexity:

Our primary goal is to find a p-ordering of a given set S ⊆ ZZpk , for a given
prime p and an integer k > 0. Since the input size is polynomial in |S|, log p, k;
an efficient algorithm should run in time polynomial in these parameters. For
the sake of clarity, log k factors will be ignored from complexity calculations; this
omission will be expressed by using notation Õ instead of O in time complexity.
We also use [n] for the set {0, 1, . . . , n− 1}.

2.2 Min-heap:

We will also use min-heap data structure. It is a tree in which each node has at
most two children and exactly one parent node (except root, no parents). The
defining property is that the key value of any node is equal or lesser than the
key value of its children.

3

5 7

11 6 8

9 10

We will use three standard functions on a min-heap with n nodes [12].
1. Create_Min_Heap(S): Takes a set S as input and returns a min-heap

with elements of S as the nodes in Õ(n).
2. Extract_Min(H): Removes the element with the minimum key from the

heap and rebalances the heap structure in Õ(log(n)).
3. Insert(H, a): Inserts the element a into the heap H in Õ(log(n)).

4 Aditya Gulati, Sayak Chakrabarti, and Rajat Mittal

2.3 p-ordering

Definition 1. For any ring S with the usual operations + and ∗, we define

S + a := {x+ a | x ∈ S} and a ∗ S := {a ∗ x | x ∈ S}

To define p-ordering, we begin by defining the valuation of an integer modulo
a prime p.

Definition 2. Let p be a prime and a 6= 0 be an integer. The valuation of the

integer a modulo p, denoted vp(a), is the integer v such that pv | a but pv+1 - a.
We also define wp(a) := pvp(a).

If a = 0 then both, vp(a) and wp(a), are defined to be ∞.

Bhargava [5] introduced the concept of p-ordering for any subset of a
Dedekind domain. We restrict to the rings of the form ZZpk (similar to ZZ)
which has been explained in [6].

Definition 3 ([5]). p-ordering on a subset S of ZZpk is defined inductively.

1. Choose any element a0 ∈ S as the first element of the sequence.

2. Given an ordering a0, a1, . . . ai−1 up to i− 1, choose ai ∈ S\{a0, a1 . . . ai−1}
which minimizes vp((ai − a0)(ai − a1) . . . (ai − ai−1)).

The i-th element of the associated p-sequence for a p-ordering a0, a1, . . . an is
defined by

vp(S, i) =
{

0 i = 0,
vp((ai − a0)(ai − a1) . . . (ai − ai−1)) i > 0.

In the (i+ 1)-th step, let x ∈ S \ {a0, a1, ..., ai−1} then the value vp((x− a0)(x−
a1) . . . (x− ai−1)) is denoted as the p-value of x at that step. If the step is clear
from context, we call the p-value of that element at that step as its p-value.

To take an example, S = {1, 3, 4, 6, 9, 10} ∈ ZZ33 has (4, 6, 1, 9, 3, 10) and
(3, 10, 6, 4, 9, 1) as two valid 3-orderings. The 3-sequence associated with both
these 3-orderings is (1, 1, 3, 3, 9, 27). At the first glance it is not clear why as-
sociated p-sequences are same. In fact, Bhargava proved the following theorem.

Theorem 1 ([5]). For any two p-orderings of a subset S ⊆ ZZ and a prime p,
the associated p-sequences are same.

We notice few more facts about p-ordering.

Observation 2. Let S be a subset of integers, let (a0, a1, a2, ...) be a p-ordering
on S, then

1. For any x ∈ ZZ, (a0 + x, a1 + x, a2 + x, ...) is a p-ordering on S + x.
2. For any x ∈ ZZ, (x ∗ a0, x ∗ a1, x ∗ a2, ...) is a p-ordering on x ∗ S.

On algorithms to find p-ordering 5

Observation 3. Let S be a subset of integers, let (a0, a1, a2, ...) be a p-ordering
on S. Then, for any x ∈ ZZ

1. vp(x ∗ S, k) = vp(S, k) + k · vp(x).
2. vp(S + x, k) = vp(S, k).

Theorem 4 ([20]). Let S be a subset of integers, let Sj = {s ∈ S | s ≡ j
(mod p)} for j = 0, 1, ..., p− 1, then for any x ∈ ZZ, s.t. x ≡ j (mod p),

wp

(∏
ai∈S

(x− ai)
)

= wp

 ∏
ai∈Sj

(x− ai)

 . (1)

2.4 Root sets and representative roots:

Definition 4. A given set S is called a root set in a ring R if there is a poly-

nomial f(x) ∈ R[x], whose roots in R are exactly the elements of S.

It is non-trivial to check if a subset is a root set. For example, {0, 3} is not a
root set in ZZ32 , whereas a large set {0, 3, 6, 9, 12, 15, 18, 21, 24} ∈ ZZ33 is a root
set for a small degree polynomial x3.

The notion of representative roots in the ring ZZpk has been used to concisely
represent roots of a polynomial [4,14,22].

Definition 5. The representative root (a+ pi∗) is a subset of ZZpk ,

a+ pi∗ := {a+ piy | y ∈ ZZpk−i}

For example, the set {1, 26, 51, 76, 101} ∈ ZZ53 can be represented as 1+25∗.
It gives a powerful way to represent big subsets concisely; a polynomial of degree
d in ZZpk can have at most d representative roots [4,14,22] (but exponentially
many roots). Extending a set S = {r1, · · · , rl} of representative roots corresponds

to the subset
l⋃

i=1
ri ⊆ ZZpk . Conversely, we show that an S ⊆ ZZpk can be

uniquely represented by representative roots.

Definition 6. Let S ⊆ ZZpk , then the set of representative roots Srep =
{r1, ..., rl} (for ri = βi + pki∗, for some βi ∈ ZZpk and ki ∈ [k]) is said to

be a minimal root set representation of S if

1. S =
l⋃

i=1
ri,

2. @ ri, rj ∈ Srep : ri ⊆ rj,

3. ∀i :
⋃

b∈[p]

(
ri + pki−1 · b

)
* S

Theorem 5. Given any set S ⊆ ZZpk , the minimal root set representation of S
is unique.

6 Aditya Gulati, Sayak Chakrabarti, and Rajat Mittal

Proof. For the sake of contradiction, let Srep and Ŝrep be two different minimal
representations of a set S. There exists an a ∈ S such that it belongs to both
representations, r ∈ Srep and r̂ ∈ Ŝrep and r 6= r̂. Then r can be written as
a+ pk1∗ and r̂ can be written as a+ pk2∗.

By Observation 6, r∩ r̂ 6= ∅ implies r ⊂ r̂ or r̂ ⊂ r. Without loss of generality,
let r̂ ⊂ r (equivalently k1 < k2).

From r̂ ⊂ r and k1 < k2, (r̂ + b · pk2−1) ⊆ r for all b ∈ [p]. Using r ⊆ S, we
get ⋃

b∈[p]

(
r̂ + b · pk2−1) ⊆ S,

contradicting minimality of Ŝrep.

We note a few observations about representative roots.

Observation 6. Given any two representative roots A1 = β1 + pk1∗ and A2 =
β2 + pk2∗, then either A1 ⊆ A2 or A2 ⊆ A1 or A1 ∩A2 = ∅.

Proof. Let A1 = β1 + pk1∗ and A2 = β2 + pk2∗ be two root sets such that
A1 ∩A2 6= ∅, then we show that A1 ⊆ A2 or A2 ⊆ A1.

Without loss of generality, let’s assume that k1 ≤ k2. Let there be some
element a ∈ A1 ∩ A2. Then, A1 can be defined as A1 = a + pk1∗ and similarly
A2 = a+ pk2∗.

Let b ∈ A2, then b = a + pk2y for some y ∈ ZZpk−k2−1 . Now, we know that
∀z ∈ ZZpk−k1−1 , a+pk1z ∈ A1. Hence, for z = pk2−k1y, we get a+pk1 ·(pk2−k1y) =
b, hence b ∈ A1. Hence, A2 ⊆ A1 and Ã = A2.

Observation 7. Let A1 = β1 + pk1∗ and A2 = β2 + pk2∗ with A1 ∩A2 = ∅. Let
a1 ∈ A1 and a2 ∈ A2, then,

vp(a1 − a2) = vp(β1 − β2).

Proof. WLOG assume that k1 ≤ k2 and β1 ∈ ZZpk1 , β2 ∈ ZZpk2 . Let a1 =
β1 + pk1a′1 and a2 = β2 + pk2a′2.

Now, we have

a1 − a2 = (β1 − β2) + pk1(a′1 − pk2−k1a′2). (2)

If vp(a1 − a2) ≥ k1, then this would imply vp(β1 − β2) ≥ k1, which means
β2 + pk2a′2 ∈ A1. Observation 6 implies that A2 ⊆ A1, which is not true.

This shows that vp(a1− a2) < k1, and since the second term in equation 2 is
pk1(a′1− pk2−k1a′2), it does not contribute to the valuation. Hence vp(a1− a2) =
vp(β1 − β2).

Observation 8. Let (a0, a1, ...) be a p-ordering on ZZpk , then (β + a0 ∗ pj , β +
a1 ∗ pj , β + a2 ∗ pj , ...) is a p-ordering on β + pj∗.

Proof. A simple proof of this theorem follows from Observation 2 and the fact
that 1, 2, 3, . . . form an obvious p-ordering in ZZpk .

On algorithms to find p-ordering 7

Lemma 1. Let Sj := {s ∈ ZZpk | s ≡ j mod p} and f(x) be a polynomial in

ZZpk [x] with root-set A. If there exist k elements (say α1, ..., αk) in A ∩ Sj such

that αl 6≡ αm mod p2 for all (l,m) pairs, then Sj ⊆ A. (Notice that this implies

k < p.)

Proof. Let f(x) =
∑n

i=0 bix
i. Let, for all i ∈ [k], αl = j + p · βl, then since αl is

in the root set of f(·), therefore,

f(j + p ∗ βl) =
n∑

i=0
bi · (j + p ∗ βl)i ≡ 0 mod pk.

Hence, for all l ∈ [k]
k−1∑
i=0

pi · βi
l · gi(j) ≡ 0 mod pk,

where, gi(x) =
∑n−i

m=0
(

m+i
m

)
· bm+i · xm. Writing this system of equations in the

form of matrices B ·X = 0 mod pk, we get,
1 β0 · · · βk−1

0
1 β1 · · · βk−1

1
...

...
1 βk−1 · · · βk−1

k−1




g0(j)
p · g1(j)

...
pk−1 · gk−1(j)

 =


0
0
...
0

 mod pk.

Here, since, B is a Vandermonde matrix, |det(B)| =
∣∣∣∣∣ ∏
i 6=j∈[k]

(βi − βj)
∣∣∣∣∣. Since

βi − βj 6≡ 0 mod p, therefore, det(B) 6≡ 0 mod p (det(B) isn’t a zero divisor).
Hence, B has an inverse. Multiplying by the inverse on both sides, we get,

g0(j)
p · g1(j)

...
pk−1 · gk−1(j)

 =


0
0
...
0

 mod pk, or,

for i ∈ [k], gi(j) ≡ 0 mod pk−i. Hence, for any element j+p·β ∈ Sj , f(j+p∗β) =∑k−1
i=0 p

i·βi
l ·gi(j) ≡ 0 mod pk (since pi·gi(j) ≡ 0 mod pk). Therefore, all elements

of Sj are a root of f(·), or Sj ⊆ A.

3 Algorithm to Find p-ordering on a Given Set

A simple algorithm to compute p-ordering was given by [5]. We restrict ourselves
to subsets of ZZpk and describe that algorithm, which can be directly derived
from the definition of p-ordering.
In order to compute a p-ordering, suppose we have already chosen

8 Aditya Gulati, Sayak Chakrabarti, and Rajat Mittal

{a0, a1, . . . at−1} forming a p-ordering of length t. We choose the next ele-
ment from S\{a0, a1, . . . at−1} such that vp((x − a0)(x − a1) . . . (x − at−1)) is
minimum, which gives a p-ordering of length t + 1. Given a set of integers
S ⊆ ZZpk we can find a p-ordering by naively checking the element which
will give us the minimum valuation with respect to p for the given expression
as in Definition 3. The naive approach given in [5] iterates over all x in
S\{a0, a1, . . . at−1} and adds the element to the p-ordering which gives the
minimum valuation.
Suppose, we add an element to the already existing p-ordering of length t. For
any given value of x ∈ S\{a0, a1, . . . at−1}, calculating x − ai and multiplying
for every 0 ≥ i < t takes O((n− t)t) operations in Z and since each of them are
less than pk, this takes O((n − t)tk log p) ≤ O(n2k log p). So repeating this n
times gives us the time complexity O(n3k log p).

In this section, we give an algorithm to output the p-ordering more efficiently.
The main result of this section is the following theorem.

Theorem 9. Given a set S ⊆ ZZ, a prime p and an integer k such that each

element of S is less than pk, we can find a p-ordering on this set in Õ(nk log p)
time.

The proof of Theorem 9 follows from the construction of Algorithm 1.

Outline of Algorithm 1 We use the recursive structure of p-ordering given by
Maulik [20]. Crucially, to find the p-value of an element a at each step, we only
need to look at elements congruent to a mod p (Theorem 4).

Suppose Sj is the set of elements of S congruent to j mod p. By the obser-
vation above, our algorithm constructs the p-ordering of set S by merging the
p-ordering of Sj ’s. Given a p-ordering up to some step, the next element for the
p-ordering of S is computed by just comparing the first elements in p-ordering
of Sj ’s (not present in the already computed p-ordering). The p-ordering of the
translated Sj ’s is computed recursively (Observation 2).

While merging the p-orderings on each of the Si’s, at each step we need
to extract and remove the element with the minimum p-value over all Sj ’s and
replace it with the next element from the p-ordering on the same set Sj . Naively,
it would need to find the minimum over all possible j’s taking Õ(p) time. Instead,
we use min heap data structure, using only Õ(log p) time for extraction and
insertion of elements.

Each node of the min-heap(H) contains the value of the element (given as
input) as value and a key, p-value, that contains the p-value of the element
present in the heap. For every element there is another key set, which stores
the index of the subsets S0, S1, . . . Sp−1 to which it belongs. The heap is sorted
in terms of the p-value and whenever we do any operation like extracting the
minimum, or adding to the heap, we consider ordering given by increasing value
of the p-value attribute of the nodes.

On algorithms to find p-ordering 9

Algorithm 1 Find p-ordering
1: procedure Merge(S0, S1, ..., Sp−1)
2: S ← []
3: for i ∈ [0, 1, ..., p− 1] do

4: for j ∈ [0, ..., len(Si)− 1] do

5: Si[j].set← i

6: i0, i1, i2, ...ip−1 ← (0, 0, ..., 0)
7: H ← Create_Min_Heap(node = {S0[i0], ..., Sp−1[ip−1]}, key = p_value)
8: while H.IsEmpty()!=true do

9: a← Extract_Min(H)
10: j ← a.set
11: if ij < len(Sj) then

12: ij ← ij + 1
13: Insert(H, Sj [ij])
14: S ← a
15: return S
16: procedure Find_p-Ordering(S)
17: if length(S)==1 then

18: S[0].p_value← 0
19: Return S
20: S0, S1, ..., Sp−1 ← ([], [], ..., [])
21: for m ∈ S do

22: t← m.value mod p
23: Append m to St

24: for i ∈ [0, 1, ..., p− 1] do

25: Si ← Find_p-Ordering((Si − i)/p)
26: for j ∈ [0, ..., len(Si)− 1] do

27: Si[j].value← p ∗ Si[j].value + i
28: Si[j].p_value← Si[j].p_value + j

29: S ←Merge(S0, S1, ..., Sp−1)
30: return S

In Algorithm 1, we use a sorted list I of non-empty Si’s, and only iterate over I
in steps 3-5, 23-28. Hence, decreasing the time complexities of these loops. We can
create/update the list I in the loop at steps 21-23.

3.1 Proof of Correctness

To prove the correctness of Algorithm 1, we need two results: the valuation is
maintained correctly in the algorithm and Merge() procedure works correctly.

Theorem 10 (Correctness of valuations during translation). In Algo-

rithm 1, let S be a subset of integers, then Find_p-Ordering(S) gives a valid

p-values for all elements of S, i.e. for the ith element in S,

S[i].p_value = vp

i−1∏
j=0

(S[i].value− S[j].value)

 .

10 Aditya Gulati, Sayak Chakrabarti, and Rajat Mittal

Proof. We prove this by induction on the size of S.
Let |S| = 1, then by the definition of vp(·), we need to show S[0].p_value = 0.

Hence, it is clear (by step 18) that the base case is correct.
Let our assumption is true for |S| < k and let |S| = k.
We divide the proof into 2 cases depending on whether S breaks into multiple

Si’s or a single Si in steps 21-23.

Case 1: Let S breaks into multiple Si’s.
It is easy to see that |Si| < k for all i ∈ [p]. Hence, the sizes of (Si − i)/p is

also less than k for all i ∈ [p]. Hence, after Find_p-Ordering((Si − i)/p) in
step 25, for the lth element in Si, we get

Si[l].p_value = vp

∏
j∈[l]

(
Si[l].value− i

p
− Si[j].value− i

p

) ,

or

Si[l].p_value = vp

p−l
∏
j∈[l]

(Si[l].value− Si[j].value)

 ,

or

Si[l].p_value = vp

∏
j∈[l]

(Si[l].value− Si[j].value)

− l.
Hence, at the end of step 27, for the lth element in Si, we get

Si[l].p_value = vp

∏
j∈[l]

(Si[l].value− Si[j].value)

 .

It is easy to see that in Merge(), each Si (i ∈ [p]) forms a sub-sequence of
Merge(S0, S1, ..., Sp−1). Let the mth element in Si occurs at the lth location in
the output of Merge(S0, S1, ..., Sp−1). By Theorem 4, it is easy to see that

vp

∏
j∈[l]

(S[l].value− S[j].value)

 = vp

 ∏
j∈[m]

(Si[m].value− Si[j].value)

 .

Since, Merge() does not change the p_value associated with any number,
hence, S[l].p_value = Si[m].p_value, or

S[l].p_value = vp

∏
j∈[l]

(S[l].value− S[j].value)

 .

Hence, the p-values at the end of Merge() are correct (step 29). Hence,
Find_p-Ordering(S) gives the correct p-values.

On algorithms to find p-ordering 11

Case 2: Let all elements of S go into a single Si.
Since k > 1, it is easy to see that at some point S breaks into multiple Si’s

on which Find_p-Ordering(S) gives the correct p-values. Hence, given the
correct p-values on Find_p-Ordering((Si − i)/p) in step 25 (|Si| = k), we
need to show that we get the correct p-values on S at the end of step 29. Since
Find_p-Ordering((Si − i)/p) gives the correct p-values, for the lth element in
Si, we get

Si[l].p_value = vp

∏
j∈[l]

(
Si[l].value− i

p
− Si[j].value− i

p

) ,

or

Si[l].p_value = vp

∏
j∈[l]

(Si[l].value− Si[j].value)

− l.
Now, at the end of step 28, for the lth element in Si, we get

Si[l].p_value = vp

∏
j∈[l]

(Si[l].value− Si[j].value)

 .

It’s easy to see that if we have only one of the Si’s is non-empty, the
Merge(S0, S1, ..., Sp−1) just outputs that Si as S (acts as identity). Therefore,

S[l].p_value = vp

∏
j∈[l]

(S[l].value− S[j].value)

 .

Hence, the output at the end of Step 29 has the correct p-values. Hence, Find_p-
Ordering(S) gives the correct p-values for sets of size k.

Hence, by induction, Find_p-Ordering(·) outputs the correct p-values.

Theorem 11 (Correctness of Merge()). In Algorithm 1, given a p-ordering
on each of the Sk’s (for k ∈ [p] and a ∈ Sk only if a ≡ k (mod p)),
Merge(S0, S1, ..., Sp−1) gives a valid p-ordering on

⋃
k∈[p] Sk.

Proof. We need to prove that, at the end of Merge(), the list S is a valid
p-ordering on

⋃
k∈[p] Sk. Let T :=

(⋃
k∈[p] Sk

)
and for each Sk (k ∈ [p]),(

ak
0 , a

k
1 , ..., a

k
|Sk|−1

)
be the p-ordering given as input to Merge(). From the

description of Merge(), it’s easy to see that:

1. The element ak
l (for some l < |Sk|) is added to the heap H only after the

elements ak
i (for all i < l) have been added to the list S.

2. At any point during Merge(), at most one element from any Sk can belong
to the heap.

12 Aditya Gulati, Sayak Chakrabarti, and Rajat Mittal

We prove by induction that the elements in the list S form a correct p-
ordering. We know that any element can be chosen as the first element by the
definition p-ordering (Definition 3), hence, the base case is correct.

Let at the ith step, (a0, a1, ...ai−1) be a p-ordering on T , then the (i + 1)th

element ai ∈ T \ {a0, a1, ...ai−1} is a valid element if

vp

∏
j∈[i]

(ai − aj)

 = min
x∈T\{a0,a1,...ai−1}

vp

∏
j∈[i]

(x− aj)

 .

By the 2nd point above, we know that at most one element from any Sk

is in H (for k ∈ [p]). Let the (ik + 1)th element of Sk be in H. Hence, the
elements (a0

i0
, a1

i1
, ..., ap−1

ip−1
) are in H. Then by the 1st point above, the elements

(ak
0 , a

k
1 , ..., a

k
ik−1) ∈ S (for all k ∈ [p]).

Let the next element to be added to S (given by Extract_Min(H)) be al
il

(for some l ∈ [p]). Hence, we have to show that

vp

∏
j∈[i]

(al
il
− aj)

 = min
x∈T\{a0,a1,...ai−1}

vp

∏
j∈[i]

(x− aj)

 .

Let x ∈ T \ {a0, a1, ...ai−1} be any element. Since, T =
(⋃

k∈[p] Sk

)
, x ∈ Sk

(for some k ∈ [p]). Now, since
(
ak

0 , a
k
1 , ..., a

k
|Sk|−1

)
is a p-ordering on Sk (we know

the correct valuations are stored by Theorem 10), hence

vp

 ∏
j∈[ik]

(ak
ik
− ak

j)

 = min
x∈Sk\{ak

0 ,ak
1 ,...ak

ik−1}

vp

 ∏
j∈[ik]

(x− ak
j)

 ,

or

vp

 ∏
j∈[ik]

(ak
ik
− ak

j)

 ≤ vp

 ∏
j∈[ik]

(x− ak
j)

 .

By Theorem 4,

vp

∏
j∈[i]

(ak
ik
− aj)

 ≤ vp

∏
j∈[i]

(x− aj)

 .

Now, by the correctness of Extract_Min(),

vp

 ∏
j∈[il]

(al
il
− al

j)

 ≤ vp

 ∏
j∈[ik]

(ak
ik
− ak

j)

 .

Again, by Theorem 4,

vp

∏
j∈[i]

(al
il
− aj)

 ≤ vp

∏
j∈[i]

(ak
ik
− aj)

 .

On algorithms to find p-ordering 13

Finally, combining the above 2 inequalities, we get

vp

∏
j∈[i]

(al
il
− aj)

 ≤ vp

∏
j∈[i]

(x− aj)

 .

Since, x was any element in T \ {a0, a1, ...ai−1}, we have

vp

∏
j∈[i]

(al
il
− aj)

 = min
x∈T\{a0,a1,...ai−1}

vp

∏
j∈[i]

(x− aj)

 .

Hence, by induction, at the end of Merge(), the list S is a valid p-ordering on⋃
k∈[p] Sk.

Using the above two theorems, we prove the correctness of Algorithm 1.

Proof of correctness of Algorithm 1. For the base case, if |S| = 1, then it’s easy
to see that Find_p-Ordering(S) gives the correct output (just the single ele-
ment).

Let Find_p-Ordering(S) gives the correct p-ordering on S for |S| < k.
We assume that S breaks into multiple Si’s in steps 21-23. The proof for the

case in which all elements of S got into a single Si follows similarly.
It’s easy to see that in this case, |Si| < k (for all i ∈ [p]). Hence, by the induc-

tion hypothesis, Find_p-Ordering((Si − i)/p) outputs the correct p-ordering
on each (Si − i)/p (step 25). From Observation 2, the p-ordering on each Si is
correct (step 27). Finally by Theorem 11, we get the correct p-ordering on S. By
induction, our algorithm returns a valid p-ordering on any subset of integers.

3.2 Time Complexity

Theorem 12. Given a set S ⊂ ZZ of size n and a prime p, such that for all

elements a ∈ S, a < pk for some k, Algorithm 1 returns a p-ordering on S in

Õ(nk log p) time.

Proof. We break the complexity analysis into 2 parts, the time complexity for
merging the subsets Si’s and the time complexity due the to recursive step.

Time complexity of Merge(S0, S1, ..., Sp−1) in Algorithm 1 Let |S0| + |S1| +
... + |Sp−1| = m. Then, the time complexity of making the heap (Step 7)
is Õ(min(m, p)) (the size of the heap). Next, the construction of common p-
ordering(Steps 8-14) takes Õ(m log p) time, this is because extraction of an el-
ement and addition of an element are both bound by Õ(log p) and the runs a
total of m times. Hence, the total time complexity of Merge(S0, S1, ..., Sp−1) is
Õ(min(m, p) +m log p) = Õ(m log p) time.

14 Aditya Gulati, Sayak Chakrabarti, and Rajat Mittal

Time complexity of Algorithm 1 Let |S| = n and S ⊂ ZZpk . Then the recursion
depth of Find_p-Ordering(S) is bound by k. Now at each depth, all the
elements are distributed into multiple heaps (of sizes m1,m2, ...,mq). The sum
of sizes of all smaller sets at a given depth is

∑q
i=1 mi = n and the time to run

any depth is
∑q

i=1 Õ(mi log p) = Õ(n log p).
Hence, total time complexity for k depth is

Õ(nk log p).

The proof of Theorem 9 follows from the proof of correctness of Algorithm 1
and time complexity obtained from Theorem 12.

4 Algorithm to Find p-ordering on a Set of

Representative Roots

The notion of representative roots (Definition 5) allows us to represent an expo-
nentially large subset of ZZpk succinctly. Further imposing a few simple condi-
tions on this representation, namely the minimal representation (Definition 6),
our subset is represented in a unique way (Theorem 5). A natural question arises,
can we efficiently find a p-ordering given a set in terms of minimal root set rep-
resentation? For example, given a set {1, 2, 4, 7, 10, 11, 13, 16, 19, 20, 22, 25} and
prime p = 3, we can write this set as an union of root sets modulo 33 as {1 +
3∗,2 + 32∗}. A 3-ordering on this set is {1,2, 4, 7,11, 10,20, 13, 16, 19, 22, 25}.
In this section we give an efficient algorithm to find a p-ordering of a given length
n on a set expressed in minimal representation.

Theorem 13. Given a set S ⊂ ZZpk , for a prime p and an integer k, that can be

represented in terms of d representative roots, we can efficiently find a p-ordering
of length n for S in Õ(d2k log p+ nk log p+ np) time.

Outline of the algorithm Similar to the previous section, we find p-ordering
on different representative roots instead of congruence classes, and merge them
together.
The important observation is, we already have a natural p-ordering defined on
a representative root (Observation 8). Since a p-ordering on each representative
root is already known, we just need to find a way to merge them. Merging was
easy in Algorithm 1 because progress in any one of the p-ordering of an Sj did
not affect the p-value of an element outside Sj . On the other hand, for this case
the exact increase in the p-value is given by Observation 7, and is precisely equal
to vp(βi − βj).

We are given with a set S containing d representative roots. Say, a root S[i]
is of the form {βi + p`i ∗ |i = 1, 2 . . . d}. This represents a set of values which can
be specified only using βi and `i. So, in each of S[i]’s, we store βi as S[i].value
and `i as S[i].exponent. Further, we can assume that the representative roots

On algorithms to find p-ordering 15

are disjoint. If they are not, one representative root will be contained in another
(Observation 6), all such occurrences can be deleted in Õ(d2k log p) time.

In the algorithm, we first run the Correlate() to store the values of vp(βi−
βj) in the matrix Corr. Then the procedure p-Exponent_Increase() returns
an array p_exponent that stores the increase in power of p with factorial, which
is basically vp((j + 1)!− j!).

In the main part of the algorithm, we maintain an array of size d to store
the valuations that we would get whenever we add the next element from a
representative root. To update the ith value of this array when an element from
the jth representative root is added, we simply add the value vp(βi−βj) (i 6= j).
Hence, at each step we find the minimum value in this array (in Õ(d)) and
add it to the combined p-ordering (in Õ(1)), then we update all the d values in
this array (in Õ(d)). In case there are more than one indices having the same
minimum value, we select the lowest index corresponding to the value. We repeat
this process till we get the p-ordering of the desired length.

With the above intuition in mind, we develop Algorithm 2 to find the p-
ordering of length n on a subset S of ZZpk given in representative root represen-
tation.

4.1 Proof of Correctness

To prove the correctness of this algorithm, we first prove that valuations are
correctly maintained.

Theorem 14. In Algorithm 2, Find_p-Ordering(S, n) maintains the correct

valuations on the set S of representative roots in valuations at every iteration

of the loop.

Proof. The array valuations is initialized to 0 in Step 17, which is equivalent to
the power of the prime in a p-ordering on the null set. At this stage we can start
with any element according to Definition 3.

Now, let us assume that we have correctly generated a p-ordering of length
ñ, with i1, i2, . . . , i|S|-many elements from each of the representative roots in S.

Suppose we have generated a p-ordering upto length ñ with i1, i2 . . . i|S| being
the number of elements from each representative root in S. We obviously have

i1 + i2 + · · ·+ i|S| = ñ.

In the next step (Step 23) of the loop, we will add another element to this p-
ordering. Let this element be an element of the eth representative root. According
to Observation 7, this element will contribute a p-value of

vp(βt − βe)

to the p-sequence from elements which correspond to the tth representative root,
for t 6= e. There are it-many elements already present in the p-ordering and hence

16 Aditya Gulati, Sayak Chakrabarti, and Rajat Mittal

Algorithm 2 Find p-ordering from minimal notation
1: procedure Correlate(S)
2: Corr ← [0]len(S)×len(S)
3: Corr ← [0]len(S)×len(S)
4: for j ∈ [1, ..., len(S)] do

5: for k ∈ [1, ..., len(S)] do

6: Corr[j][k]← vp(S[j].value− S[k].value)
7: return Corr
8: procedure p-Exponent_Increase(n)
9: vp(1)← 1

10: for j ∈ [1, ..., n] do

11: vp((j + 1)!)← vp(j + 1) ∗ vp(j!)
12: p_exponent[j]← vp((j + 1)!)− vp(j!)
13: return p_exponent

14: procedure Find_p-Ordering(S, n)
15: corr ← Correlate(S)
16: increase← p-Exponent_Increase(n)
17: valuations← [0]|S|
18: p_ordering ← {}
19: i1, i2 . . . i|S| ← 0
20: for i ∈ {1, 2, . . . n} do

21: min← min{valuations}
22: index← argmin{valuations}
23: p_ordering.append(S[index].value + pS[index].exponent ∗ iindex)
24: for j ∈ [1, ..., len(S)] do

25: if j = index then

26: valuations[j]← valuations[j] + S[index].exponent + increase[ij]
27: else

28: valuations[j]← valuations[j] + corr(index, j)
29: iindex ← iindex + 1
30: return p_ordering

the total power of p due to this new element from each of the representative roots
will be itvp(βt − βe), for t 6= e.

Next, we find the p-value contributed due to the same representative root.
Notice that, from Observation 8 we will have the elements of the eth represen-
tative root as a p-ordering as well on βe + pke∗, of length ie. Now by Theorem
2, we will have this p-ordering on βj + pke∗ as

{βe, βe + pke , βe + pke2, . . . βe + pke(ie − 1)}.

When we add another element to this the p-value contributed due to eth repre-
sentative root will be kevp(ie!).

On algorithms to find p-ordering 17

Summing them the total p-value at each step, considering the next element
to be added being from eth representative root is∑

t∈[|S|];t6=e

itvp(βt − βe) + kevp(ie!). (3)

In Steps 21-22, we choose e such that this expression is minimum in our algo-
rithm.

Now, we want to show that

valuations[j] =
∑

t∈[|S|];t 6=j

itvp(βt − βj) + kjvp(ij !)

holds true. We do this inductively. First we already have 0 stored in each entry of
valuations. Let us assume that we have obtained a p-ordering upto length ñ with
the respective indices as i1, i2 . . . i|S| with the p-value corresponding to addition
of next element from jth representative root correctly stored in valuations[j].
Let the last element added to this p-ordering (in Step 23) correspond to the
tth representative root (t = min_index) and then we change the valuations
accordingly in Steps 24-28.

When we add this element, we increase it by one (i′t = it + 1). Now when we
add another element, say m, (after the last element from the tth representative
root), if m 6= t then the new p-value will be∑

l∈[|S|];l 6∈{t,m}

ilvp(βl − βm) + (it + 1)vp(βt − βm) + kmvp(im!),

which is vp(βt − βm) more than the previous valuations[m]. So accordingly we
add this value in the previous step (when we find t as the min_index and then
update in Steps 27-29).

However, if this m (the next min_index after adding an element from tth

representative root) is same as t, then the p-value will be∑
l∈[|S|];l 6=t

ilvp(βl − βt) + ktvp((it + 1)!),

while the previous value of valuations[t] was
∑

l∈[|S|];l 6=t ilvp(βl− βt) + ktvp(it!)
and this difference vp((it+1)!)−vp(it!) is stored in p-Exponent_Increase(ij).
We thereby update Steps 25-26 of Algorithm 2 to incorporate this change. This
shows that valuations correctly stores the p-value, as desired.

Proof of correctness of Algorithm 2. By the definition of p-ordering we know
that at each iteration if we choose the element with the least valuation then
we get a valid p-ordering. By Theorem 14, we know that valuations array has
the correct next valuations. Hence, to find the representative root with the least
valuation, we find the index of the minimum element in valuations.

To add the next value, by Observation 8, we find the next element from the
p-ordering on the representative root. Hence, the element added has the least
valuation. Hence, Find_p-Ordering(S, n) returns the correct p-ordering.

18 Aditya Gulati, Sayak Chakrabarti, and Rajat Mittal

4.2 Time Complexity

Theorem 15. Given a set S ⊂ ZZpk , for a prime p and an integer k, that can
be represented in terms of d representative roots, Algorithm 2 finds a p-ordering
of length n for S in Õ(d2k log p+ nk log p+ np) time.

Proof. Let S contains d representative roots of ZZpk . We want to find a p-ordering
up to length n.

The function Correlate(S) runs a double loop, each of size d, and each
iteration takes Õ(k log p), hence, Correlate(S) takes Õ(d2k log p).

p-Exponent_Increase(n) runs a single loop of size n where each iteration
takes Õ(k log p) time, hence, it takes Õ(nk log p).

Then main loop (Step 20-29) runs a loop of size n, inside this loop we do
O(d) operations on elements of size log k, hence, it takes Õ(nd) time.

Hence, in total, our algorithm takes

Õ(d2k log p+ nk log p+ nd)

time.

Now, the proof of Theorem 13 follows directly from the proof of correctness
of Algorithm 2 and the time complexity analysis shown in Theorem 15.

5 Structure of Root Sets for a given k

We know that ZZpk is not a unique factorization domain. In fact, even small
degree polynomials can have exponentially large number of roots as seen in
Section 2. Interestingly, not all subsets of ZZpk can be a root set (Definition 4).
If we know the general form of root sets, it can help us decide if a given set is
a root set. In this section, we discuss and distinctly describe all the root sets in
Zp2 , Zp3 and Zp4 .

Dearden and Metzger [13] showed that R is a root-set iff Rj = {r ∈ R | r ≡ j
(mod p)} is also a root-set for all j ∈ [p]. For example, we know that R =
{1, 4, 5, 7, 9, 10, 13, 14, 16, 19, 22, 23, 25} is the root set in ZZ33 for the polynomial
f(x) = (x−1)3(x−5)2(x−9), then R0 = {9}, R1 = {1, 4, 7, 10, 13, 16, 19, 22, 25},
and R2 = {5, 14, 23} are also root sets.

The number and structure of Rj is symmetric for all j. LetNpk be the number
of possible Rj ’s, then total number of possible root-sets become (Npk)p [13].

Let Sj = {s ∈ ZZpk | s ≡ j (mod p)}, we take the following approach to
find all possible root-sets Rj ’s. Given an Rj , define R = {(r − j)/p : r ∈ Rj}
to be the translated copy. We show that if R contains at least k many distinct
residue classes modp, then Rj = Sj (Lemma 1). We exhaustively cover all the
other cases, when R contains less than k residue classes (possible because k is

On algorithms to find p-ordering 19

small). For example, in ZZp3 , we find that

Rj =



j + p · ∗,
(j + p · α1 + p2∗) ∪ (j + p · α2 + p2∗), for α1 6= α2 ∈ [p],
j + p · α+ p2 ∗ , for α ∈ [p],
j + p · α1 + p2 · α2, for α1, α2 ∈ [p],
∅.

Using the following approach, we analyze the root sets modulo prime powers by
assuming a general polynomial of arbitrarily large degree. We then take a small
set A ⊂ Sj (recall that Sj = {s ∈ ZZpk | s ≡ j (mod p)}), and find the smallest
root-set Rj for which A ⊂ Rj . It is easy to see that we have a set A of size k
for which the smallest root-set Rj containing A is the complete Sj (Lemma 1).
Next, we iterate over smaller sets A to find smaller root-sets Rj . To iterate over
multiple A’s at a time, we generalise by looking at structures of A. We know that
the number of possible structures of A is small, since, the size of A is less that k,
which is small. Hence, we iterate over all possible structures of A to exhaust all
possible structures of Rj . This gives the size of Rj , denoted by Npk . The total
number of possible root-sets are (Npk)p ([13]).

5.1 Root sets modulo p2

A number a ∈ ZZp2 can be uniquely represented as a = a0 + a1 · p for some
a0, a1 ∈ [p]. Let f(x) =

∑∞
i=0 bi · xi be a polynomial, and α = α0 +α1 · p ∈ ZZp2

be a root of f(x) in ZZp2 , then by Taylor expansion of f

f(α0) + p · α1 · f ′(α0) = 0 mod p2.

Since all element of Rj are congruent to j mod p, fix α0 to some j. We find that
the root set Rj can only take the following structure.

1. 1 root-set is the complete sub-tree under j (more than 1 residue class),
equivalently

Rj = j + p · ∗.

2. p root-sets are a single element congruent to j mod p (1 residue class), equiv-
alently

Rj = j + p · α, for α ∈ [p].

3. 1 root-set is empty (no residue classes), equivalently
Rj = ∅.

Hence, we have, Np2 = p+ 2.

20 Aditya Gulati, Sayak Chakrabarti, and Rajat Mittal

5.2 Root sets modulo p3

Similarly in ZZp3 , we know that any number a can be uniquely represented as
a = a0 + a1 · p + a2 · p2 for some a0, a1, a2 ∈ [p]. Let f(x) =

∑∞
i=0 bi · xi be a

polynomial. Let some α = α0 + α1 · p+ α2 · p2 ∈ ZZp3 be a root of f(x) in ZZp3 .
Then we have,

f(α0) + p · α1 · f ′(α0) +
(

(α1)2 · f
′′(α0)

2 + α2 · f ′(α0)
)
· p2 = 0 mod p3.

Fixing α0 to some j, we find that the root set can only take the following
structure.

1. 1 root-set is the complete sub-tree, equivalently
Rj = j + p · ∗.

2. p(p−1)
2 root-sets are the union of 2 sub-trees different at the level p1, equiv-

alently
Rj = (j + p · α1 + p2∗) ∪ (j + p · α2 + p2∗), for α1 6= α2 ∈ [p].

3. p root-sets are a sub-tree at the level p1, equivalently
Rj = j + p · α+ p2 ∗ , for α ∈ [p].

4. p2 root-sets are a single element congruent to j mod p, equivalently
Rj = j + p · α1 + p2 · α2, for α1, α2 ∈ [p].

5. 1 root-set is empty, equivalently
Rj = ∅.

Hence, we have, Np3 = 3p2+p+4
2 .

5.3 Root sets modulo p4

Similar to k = 2, 3, the root sets Rj can only take the following structures.

1. 1 root-set is the complete sub-tree under j, equivalently
Rj = j + p · ∗.

2. p(p−1)(p−2)
6 root-sets under j are the union of 3 sub-trees different at the

level p1, equivalently
Rj = (j+p·α1+p2∗)∪(j+p·α2+p2∗)∪(j+p·α3+p2∗), for α1 6= α2 6= α3 ∈ [p].

3. p(p−1)
2 root-sets are the union of 2 sub-trees different at the level p1, equiv-

alently
Rj = (j + p · α1 + p2∗) ∪ (j + p · α2 + p2∗), for α1 6= α2 ∈ [p].

4. p root-sets are a sub-tree at the level p1, equivalently
Rj = j + p · α+ p2 ∗ , for α ∈ [p].

On algorithms to find p-ordering 21

5. p3(p−1)
2 root-sets are a union of 2 sub-trees at the level p2 that are different

at the level p1, equivalently
Rj = (j+p·α1+p2·β1+p3∗)∪(j+p·α2+p2·β2+p3∗), for α1 6= α2 β1, β2 ∈ [p].

6. p2 root-sets are a sub-tree at the level p2, equivalently
Rj = j + p · α1 + p2 · α2 + p3 · ∗, for α1, α2 ∈ [p].

7. p3 root-sets are a single element congruent to j mod p, equivalently
Rj = j + p · α1 + p2 · α2 + p3 · α3, for α1, α2, α3 ∈ [p].

8. 1 root-set is empty, equivalently
Rj = ∅.

Hence, we have, Np4 = 3p4+4p3+6p2+5p+12
6 .

Acknowledgements: We would like to thank Naman Jain for helpful discus-
sions. R.M. would like to thank Department of Science and Technology, India
for support through grant DST/INSPIRE/04/2014/001799.

References

1. Adleman, L., Lenstra, H.: Finding irreducible polynomials over finite fields. In:
Proc. 18th Annual ACM Symp. on Theory of Computing (STOC), 350 - 355
(1986). pp. 350–355 (11 1986). https://doi.org/10.1145/12130.12166

2. Agrawal, M., Kayal, N., Saxena, N.: Primes is in p. Annals of mathematics pp.
781–793 (2004)

3. Berlekamp, E.: Factoring polynomials over large finite fields. Mathematics of
Computation 24, 713–735 (07 1970). https://doi.org/10.1090/S0025-5718-1970-
0276200-X

4. Berthomieu, J., Lecerf, G., Quintin, G.: Polynomial root finding over local rings
and application to error correcting codes. Applicable Algebra in Engineering, Com-
munication and Computing 24(6), 413–443 (2013)

5. Bhargava, M.: P-orderings and polynomial functions on arbitrary sub-
sets of dedekind rings. Journal Fur Die Reine Und Angewandte
Mathematik - J REINE ANGEW MATH 1997, 101–128 (01 1997).
https://doi.org/10.1515/crll.1997.490.101

6. Bhargava, M.: The factorial function and generalizations. American Mathematical
Monthly 107 (11 2000). https://doi.org/10.2307/2695734

7. Bhargava, M.: On p-orderings, rings of integer values functions, and ultrametric
analysis. Journal of the American Mathematical Society 22(4), 963–993 (2009)

8. Bose, R., Ray-Chaudhuri, D.: On a class of error correcting binary group codes
*. Information and Control 3, 68–79 (03 1960). https://doi.org/10.1016/S0019-
9958(60)90287-4

9. Cantor, D., Zassenhaus, H.: A new algorithm for factoring polyno-
mials over finite fields. Mathematics of Computation 36 (04 1981).
https://doi.org/10.2307/2007663

10. Cheng, Q., Gao, S., Rojas, J.M., Wan, D.: Counting roots for polynomials modulo
prime powers. The Open Book Series 2(1), 191–205 (2019)

https://doi.org/10.1145/12130.12166
https://doi.org/10.1090/S0025-5718-1970-0276200-X
https://doi.org/10.1090/S0025-5718-1970-0276200-X
https://doi.org/10.1515/crll.1997.490.101
https://doi.org/10.2307/2695734
https://doi.org/10.1016/S0019-9958(60)90287-4
https://doi.org/10.1016/S0019-9958(60)90287-4
https://doi.org/10.2307/2007663

22 Aditya Gulati, Sayak Chakrabarti, and Rajat Mittal

11. Chor, B., Rivest, R.: A knapsack type public key cryptosystem based on arith-
metic in finite fields. IEEE Transactions on Information Theory 34 (09 2001).
https://doi.org/10.1109/18.21214

12. Cormen, T.H., Leiserson, C.E., Rivest, R.L., Stein, C.: Introduction to Algorithms.
MIT Press, Cambridge, MA (2001)

13. Dearden, B., Metzger, J.: Roots of polynomials modulo prime powers. Eur. J.
Comb. 18, 601–606 (08 1997). https://doi.org/10.1006/eujc.1996.0124

14. Dwivedi, A., Mittal, R., Saxena, N.: Efficiently factoring polynomials modulo p4.
International Symposium on Symbolic and Algebraic Computation (ISSAC) pp.
139–146 (07 2019). https://doi.org/10.1145/3326229.3326233

15. Hocquenghem, A.: Codes correcteurs d’erreurs. Chiffres, Revue de l’Association
Française de Calcul 2 (01 1959)

16. Johnson, K.: P-orderings of finite subsets of dedekind domains. Journal of Algebraic
Combinatorics 30, 233–253 (2009)

17. Lenstra, A., Lenstra, H., Lovász, L.: Factoring polynomials with
rational coefficients. Mathematische Annalen 261 (12 1982).
https://doi.org/10.1007/BF01457454

18. Lenstra, H.: On the chor—rivest knapsack cryptosystem. Journal of Cryptology 3,
149–155 (01 1991). https://doi.org/10.1007/BF00196908

19. Lidl, R., Niederreiter, H.: Finite fields, vol. 20. Cambridge university press (1997)
20. Maulik, D.: Root sets of polynomials modulo prime powers. J. Comb. Theory, Ser.

A 93, 125–140 (01 2001). https://doi.org/10.1006/jcta.2000.3069
21. Odlyzko, A.: Discrete logarithms and their cryptographic significance. Advances in

Cryptography, EUROCRYPT ’84, Proceedings, Lecture Notes in Computer Sci-
ence 209, 224–314 (1985)

22. Panayi, P.N.: Computation of Leopoldt’s P-adic regulator. Ph.D. thesis, University
of East Anglia (1995)

23. Reed, I., Solomon, G.: Polynomial codes over certain finite fields. Journal of
the Society for Industrial and Applied Mathematics 8, 300–304 (06 1960).
https://doi.org/10.2307/2098968

24. Sudan, M.: Decoding reed solomon codes beyond the error-correction bound. Jour-
nal of Complexity 13, 180–193 (03 1997). https://doi.org/10.1006/jcom.1997.0439

25. Zassenhaus, H.: On hensel factorization ii. Journal of Number Theory 1, 291–311
(07 1969). https://doi.org/10.1016/0022-314X(69)90047-X

https://doi.org/10.1109/18.21214
https://doi.org/10.1006/eujc.1996.0124
https://doi.org/10.1145/3326229.3326233
https://doi.org/10.1007/BF01457454
https://doi.org/10.1007/BF00196908
https://doi.org/10.1006/jcta.2000.3069
https://doi.org/10.2307/2098968
https://doi.org/10.1006/jcom.1997.0439
https://doi.org/10.1016/0022-314X(69)90047-X

	On algorithms to find p-ordering

